(本小题满分12分)某食品企业一个月内被消费者投诉的次数用表示, 椐统计,随机变量的概率分布如下:
(Ⅰ)求a的值和的数学期望; (Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。
(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ).(1)求S关于t的函数解析式,并指出该函数的定义域;(2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
(本小题满分14分)在平面直角坐标系xOy中,己知点 ,C, D分别为线段OA, OB上的动点,且满足AC=BD.(1)若AC=4,求直线CD的方程;(2)证明: OCD的外接圆恒过定点(异于原点O).
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.(1)若ABBC,CPPB,求证:CPPA:(2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分14分)己知向量 , .(1)若 ,求 的值:(2)若 ,且 ,求 的值.
若实数满足,则的最小值为_______.