已知椭圆,过其左焦点且斜率为的直线与椭圆及其准线的交点从左到右的顺序为(如图),设.(1)求的解析式;(2)求的最值.
(本题16分)如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为,(1)以射线OC为轴的正向,OB为轴正向,建立直角坐标系,求出斜坡CD所在直线方程;(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).
(本题14分)△ABC中,角A、B、C的对边依次为、、.已知,,外接圆半径,边长为整数,(1)求∠A的大小(用反三角函数表示);(2)求边长;(3)在AB、AC上分别有点D、E,线段DE将△ABC分成面积相等的两部分,求线段DE长的最小值.
(本题14分)如图,四棱锥中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点(1)求异面直线PA与CE所成角的大小;(2)(理)求二面角E-AC-D的大小。(文)求三棱锥A-CDE的体积。
设计如图所示一水渠,它的横截面曲线是抛物线形,宽2m,渠深为1.5m,水面EF距AB为0.5m. (1)求截面图中水面宽度;(2)由于情况有变,现要将此水渠改造为横截面是等腰梯形,要求渠深不变,不准往回填土,只准挖土,试求截面梯形的下边长为多大时,才能使所挖的土最少?
现有流量均为300的两条河流A、B会合于某处后,不断混合,它们的含沙量分别为2和0.2.假设从汇合处开始,沿岸设有若干个观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1秒钟内交换100的水量,即从A股流入B股100水,经混合后,又从B股流入A股100水并混合.问:从第几个观测点开始,两股河水的含沙量之差小于0.01(不考虑泥沙沉淀)?