已知,,,如图所示,若直线过点且与线段公共点,试求直线的斜率的取值范围.
(本小题满分12分)将A、B两枚骰子各抛掷一次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两枚骰子点数之和是3的倍数的结果有多少种?(3)两枚骰子点数之和是3的倍数的概率为多少?
已知二次函数同时满足:①不等式≤0的解集有且只有一个元素;②在定义域内存在,使得不等式成立,设数列{}的前项和.(1)求函数的表达式;(2) 设各项均不为0的数列{}中,所有满足的整数的个数称为这个数列{}的变号数,令(),求数列{}的变号数; (3)设数列{}满足:,试探究数列{}是否存在最小项?若存在,求出该项,若不存在,说明理由.
已知,点满足,记点的轨迹为. (Ⅰ)求轨迹的方程;(Ⅱ)若直线过点且与轨迹交于、两点. (i)设点,问:是否存在实数,使得直线绕点无论怎样转动,都有成立?若存在,求出实数的值;若不存在,请说明理由.(ii)过、作直线的垂线、,垂足分别为、,记 ,求的取值范围.
)袋中装着标有数字1,2,3的小球各2个,从袋中任取2个小球,每个小球被取出的可能性都相等.(Ⅰ)求取出的2个小球上的数字互不相同的概率;(Ⅱ)用表示取出的2个小球上的数字之和,求随机变量的概率分布与数学期望.
设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称, 且当x∈[ 2,3 ] 时, 222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.