已知圆,定点,问过点的直线的斜角在什么范围内取值时,这条直线与圆:(1)相切,(2)相交,(3)相离,并写出过点的切线的方程.
设椭圆:的左、右焦点分别是,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于两点,求面积的最大值.
直四棱柱中,底面是等腰梯形,,,为的中点,为中点.(1) 求证:;(2) 若,求与平面所成角的大小
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试.(1)求该学生考上大学的概率;(2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率
已知数列的前项和,。(I)求数列的通项公式;(II)记,求
已知函数是奇函数,且满足(Ⅰ)求实数、的值; (Ⅱ)试证明函数在区间单调递减,在区间单调递增;(Ⅲ)是否存在实数同时满足以下两个条件:1不等式对恒成立; 2方程在上有解.若存在,试求出实数的取值范围,若不存在,请说明理由.