设,曲线和有4个不同的交点.(1)求的取值范围;(2)证明这4个次点共圆,并求圆半径的取值范围.
(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
.(本小题满分12分)已知以函数f(x)=mx3-x的图象上一点N(1,n)为切点的切线倾斜角为.(1)求m、n的值;(2)是否存在最小的正整数k,使得不等式f(x)≤k-1995,对于x∈[-1,3]恒成立?若存在,求出最小的正整数k,否则请说明理由.
(本小题满分12分)已知函数f(x)=log3(ax+b)的部分图象如图所示.(1)求f(x)的解析式与定义域;(2)函数f(x)能否由y=log3x的图象平移变换得到;(3)求f(x)在[4,6]上的最大值、最小值.
(本小题满分12分)已知函数f(x)=kx3-3(k+1)x2-2k2+4,若f(x)的单调减区间为(0,4).(1)求k的值;(2)对任意的t∈[-1,1],关于x的方程2x2+5x+a=f(t)总有实根,求实数a的取值范围.
(本小题满分12分)设集合A={x|x2<4},B={x|1<}.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.