如图,已知平行六面体ABCD—A1B1C1D1的底面是菱形且∠C1CB=∠C1CD=∠BCD=60°, (1)证明 C1C⊥BD; (2)假定CD=2,CC1=,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值; (3)当的值为多少时,可使A1C⊥面C1BD?
已知函数f(x)的定义域为R,且满足f(x+2)=-f(x)(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2 009]上的所有x的个数.
如图,MN是异面直线a、b的公垂线,平面α平行于a和b,求证:MN⊥平面α.
如图,设三角形ABC的三个顶点在平面的同侧,A⊥于,B⊥于,C⊥于,G、分别是△ABC和△的重心,求证:G⊥
求证:经过平面外一点有且只有一个平面和已知平面平行 已知:∉α 求证:过点有且只有一个平面β∥α
已知直线⊥平面α,垂足为A,直线AP⊥求证:AP在α内