设F1、F2为椭圆的两个焦点,P为上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求的值.
已知椭圆(a>b>0)的两个焦点分别为,离心率为,过的直线l与椭圆C交于M,N两点,且的周长为8. (Ⅰ)求椭圆C的方程; (Ⅱ)过原点O的两条互相垂直的射线与椭圆C分别交于A,B两点,证明:点O到直线AB的距离为定值,并求出这个定值.
已知数列与,若且对任意正整数满足数列的前n项和. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前n项和.
如图,正三棱柱(底面为正三角形,侧棱垂直于底面)中,D是BC的中点,. (Ⅰ)求证:平面; (Ⅱ)求点C到平面的距离.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,. (Ⅰ)求图中的值; (Ⅱ)根据直方图,估计这100名学生语文成绩的平均分; (Ⅲ)若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数.
已知函数,则下列结论中正确的是 ()