已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.(Ⅰ)证明:λ=1-e2;(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
(本小题满分12分)已知函数,其中为常数. (1)当时,恒成立,求的取值范围;(2)求的单调区间.
(本小题满分12分)椭圆的中心为坐标原点,焦点在轴上,焦点到相应准线的距离以及离心率均为,直线与轴交于点,与椭圆交于相异两点、,且.(1)求椭圆方程;(2)若,求的取值范围.
(本小题满分12分)在数列 (1)(2)设 (3)求数列
(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.
对于定义域为的函数,若同时满足:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把函数()叫做闭函数. (1) 求闭函数符合条件②的区间; (2) 若是闭函数,求实数的取值范围.