已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.(Ⅰ)证明:λ=1-e2;(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。 (I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率; (II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量, 求的分布列及数学期望。
设二次函数,已知不论为何实数,恒有和。 (1)求证:b+c=-2 (2)求证: (3)若函数的最大值为8,求b、c的值。
已知函数 (Ⅰ)判断的奇偶性. (Ⅱ)判断在内单调性并用定义证明; (Ⅲ)求在区间上的最小值.
给出集合A={-2,-1,,,,1,2,3}。已知a∈A,使得幂函数为奇函数,指数函数在区间(0,+∞)上为增函数。 (1)试写出所有符合条件的a,说明理由; (2)判断f(x)在(0,+∞)的单调性,并证明; (3)解方程:f[g(x)]=g[f(x)]。
已知的最大值为1,最小值为,求实数与的值。