(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC, AB="2," AD=, BC=,椭圆E以A,B为焦点且经过点D. (1)建立适当的直角坐标系,求椭圆E的方程; (2)若点Q满足:,问是否存在不平行AB,的直线与椭圆E交于M、N两点.且|MQ|=|NQ|.若存在,求直线的斜率的取值范围,若不存在,请说明理由.
(本题14分)设为实数,函数.(1)若,求的取值范围;(2)求的最小值;(3)设函数,直接写出(不需给出演算步骤)不等式的解集.
((本题14分)设为实数,函数.(1)若,求的取值范围;(2)求的最小值;(3)设函数,直接写出(不需给出演算步骤)不等式的解集.
(、(本题12分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,BC∥AD, AB⊥AD, AD=2AB=2BC="2, " O为AD中点.(1)求证:PO⊥平面ABCD;(2)求直线PB与平面PAD所成角的正弦值;(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。
(本题12分)如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E、F分别为棱AB、PD的中点.(1)求证:平面PCD;(2)求证:平面PCE⊥平面PCD.
(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,,,,是边的中点.(Ⅰ)求证:; (Ⅱ)求证:∥面.