在四棱锥P—ABCD中,侧棱PA⊥底面ABCD,底面ABCD是矩形,问底面的边BC上是否存在点E.(1)使∠PED=90°;(2)使∠PED为锐角. 证明你的结论.
已知.(1)若的夹角为60o,求;(2)若=61,求的夹角.
设二次函数.(1)求函数的最小值;(2)问是否存在这样的正数,当时,,且的值域为?若存在,求出所有的的值,若不存在,请说明理由.
已知函数(其中)..(1)若命题“”是假命题,求的取值范围;(2)设命题:,或;命题:,.若是真命题,求的取值范围.
某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例.又当时,.(1)求与之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益用电量(实际电价-成本价)]
已知函数.(1)求函数的定义域;(2)判断函数的奇偶性;(3)当时,函数,求函数的值域.