设A、B是双曲线x2–=1上的两点,点N(1,2)是线段AB的中点.(1)求直线AB的方程;(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
已知函数(、∈R,≠0),函数的图象在点(2,)处的切线与轴平行. (1)用关于的代数式表示; (2)求函数的单调增区间; (3)当,若函数有三个零点,求m的取值范围.
已知椭圆的一个焦点为F(2,0),离心率. (1)求椭圆的方程; (2)设直线与椭圆交于不同的A,B两点,与y轴交于E点,且,求实数m的值.
如图,在三棱柱中,侧棱底面,为的中点,,. (1)求证:平面; (2) 求四棱锥的体积.
已知函数(R). (1)求的最小正周期和最大值; (2)若,其中是面积为的锐角的内角,且,求边和的长.
某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录了6个抽查数据,获得重量数据的茎叶图如图4. (1)根据样品数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对较稳定; (2)若从乙车间6件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过2克的概率.