已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6).(1)求双曲线方程. (2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论.
如图,在直角梯形中,,,,,,椭圆以、为焦点且经过点.(Ⅰ)建立适当的直角坐标系,求椭圆的方程;(Ⅱ)以该椭圆的长轴为直径作圆,判断点C与该圆的位置关系。
在等差数列中,,与的一个等比中项为。(Ⅰ)求数列的通项公式;(Ⅱ)设数列的通项,求数列的前项和。
下表为某体育训练队跳高、跳远成绩的分布,共有队员40人,成绩分为1~5五个档次。例如表中所示跳高成绩为4分,跳远成绩为2分的队员为5人.将全部队员的姓名卡混合在一起,任取一张,该卡片队员的跳高成绩为x分,跳远成绩为y分.⑴求的值;⑵求的概率及且的概率.
已知中∠ACB=90°,SA⊥面ABC,AD⊥SC于D,求证: AD⊥面SBC;
已知向量,,函数。(Ⅰ)求函数的值域; (Ⅱ)当,且时,求的值