用一块长为a,宽为b(a>b)的矩形木板,在二面角为α的墙角处围出一个直三棱柱的谷仓,试问应怎样围才能使谷仓的容积最大?并求出谷仓容积的最大值.
(本大题满分10分) 已知的顶点坐标分别为A(-1,1),B(2,7),C(-4,5)。 求AB边上的高CD所在的直线方程。
已知,且,求的最大值.
在平面直角坐标系中,已知圆和圆. (1)若直线过点,且被圆截得的弦长为,求直线的方程; (2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.
如图,在五面体中,平面,,,为的中点,. (1)求异面直线与所成角的大小; (2)证明:平面平面; (3)求与平面所成角的正弦值.
已知圆,直线.(1)求证:直线与圆恒相交; (2)求直线被圆截得的弦长最短时的值以及最短弦长.