设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α、β为何实数恒有f(sinα)≥0和f(2+cosβ)≤0。(1)求证: b+c=-1;(2)求证c≥3;(3)若函数f(sinα)的最大值为8,求b,c的值.
甲、乙等五名志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加岗位服务的概率; (Ⅱ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
已知圆C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程是(t是参数)。若直线与圆C相切,求实数m的值。
将曲线绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
(本题满分16分)对于数列,若存在常数M>0,对任意,恒有,则称数列为数列. 求证:⑴设是数列的前n项和,若是数列,则也是数列. ⑵若数列都是数列,则也是数列.
(本题满分16分) 一束光线从点出发,经过直线上的一点D反射后,经过点. ⑴求以A,B为焦点且经过点D的椭圆C的方程; ⑵过点作直线交椭圆C于P、Q两点,以AP、AQ为邻边作平行四边形APRQ,求对角线AR长度的取值范围。