(本题满分12分)求两对称轴与坐标轴重合,离心率e=0.8,焦点到相应准线的距离等于的椭圆方程.
(本小题满分11分)已知函数的在区间上的最小值为0.(Ⅰ)求常数a的值;(Ⅱ)当时,求使成立的x的集合.
(本小题满分14分)已知函数,其中为自然对数的底数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;(Ⅲ)试探究当时,方程解的个数,并说明理由.
(本小题满分12分)已知函数在同一半周期内的图象过点,其中为坐标原点,为函数图象的最高点,为函数的图象与轴的正半轴的交点.(Ⅰ)求证:为等腰直角三角形.(Ⅱ)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线上(如图所示),试判断点是否也落在曲线上,并说明理由.
(本小题满分12分)函数在区间上的最小值记为.(Ⅰ)若,求函数的解析式;(Ⅱ)定义在的函数为偶函数,且当时,.若,求实数的取值范围.
(本小题满分12分)已知抛物线的焦点为,过点作一条直线与抛物线交于,两点.(Ⅰ)求以点为圆心,且与直线相切的圆的方程;(Ⅱ)从中取出三个量,使其构成等比数列,并予以证明.