(本小题满分12分)
20090327
已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K,已知|AK|=|AF|,三角形AFK的面积等于8.
(2)若过点作曲线E的互相垂直的弦PQ和MN,求四边形PMQN面积的最大值和此时弦所在的直线方程.
已知,B、D是圆上两动点,且四边形ABCD是矩形(1)求顶点C的轨迹E的方程;
( 12分)已知正项数列的前n项和满足 (1)求数列的通项公式; (2)设是数列的前n项的和,求证:
将一个各面上均涂有红色的正方体锯成27个同样大小的小正方体, (1)从这些小正方体中任取一个,求其中至少有两个面涂有红色的概率; (2)从中任取2个小正方体,记2个小正方体涂有红色的面数和为ξ,求ξ的分布列和数学期望.
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点且满足,M,S分别为PB,BC的中点 (1)证明:CM⊥SN; (2)求SN与平面CMN所成角的大小; (3)求三棱锥P-ABC外接球的体积V。