甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为 2 3 ,乙队中3人答对的概率分别为 2 3 , 2 3 , 1 2 且各人正确与否相互之间没有影响.用 ξ 表示甲队的总得分. (Ⅰ)求随机变量 ξ 分布列; (Ⅱ)用 A 表示"甲、乙两个队总得分之和等于3"这一事件,用B表示"甲队总得分大于乙队总得分"这一事件,求 P ( A B ) .
如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.图①图② (1)求证:DE⊥平面BCD; (2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.
如图,在球面上有四个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积.
如图,AB、CD均为圆O的直径,CE⊥圆O所在的平面,BF∥CE.求证: (1)平面BCEF⊥平面ACE; (2)直线DF∥平面ACE.
如图,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延长线上一点,FP=t.过A、B、P三点的平面交FD于M,交FE于N. (1)求证:MN∥平面CDE; (2)当平面PAB⊥平面CDE时,求t的值.
如图,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求证: (1)BF∥平面ACE; (2)BF⊥BD.