在锐角三角形中,求证:
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.
(本小题满分10分)选修4—1:几何证明选讲如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E.(1)求证:;(2)求AD·AE的值.
(本小题满分12分)已知函数,,其中.(1)若存在,使得成立,求实数M的最大值;(2)若对任意的,都有,求实数的取值范围.
(本小题满分12分)已知椭圆上任意一点到两焦点距离之和为,离心率为.(1)求椭圆的标准方程;(2)若直线的斜率为,直线与椭圆C交于两点.点为椭圆上一点,求△PAB的面积的最大值.
(本小题满分12分)下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80-90分数段的学员数为21人(1)求该专业毕业总人数N和90-95分数段内的人数;(2)现欲将90-95分数段内的名人分配到几所学校,从中安排2人到甲学校去,若人中仅有两名男生,求安排结果至少有一名男生的概率.