测量某一距离,发生的误差X是随机的,并且从样本分析知X的方差是4,求在三次测量中至少有一次误差的绝对值超过4的概率.
已知椭圆D:+=1与圆M:x+(y-m)=9(m∈R),双曲线G与椭圆D有相同的焦点,它的两条渐近线恰好与圆M相切。当m=5时,求双曲线G的方程。
已知空间四边形ABCD中,AB⊥CD,AC⊥BD,证明AD⊥BC。
已知双曲线和椭圆有相同的焦点和,两曲线在第一象限内的交点为,椭圆与轴负半轴交于点,且三点共线,分有向线段的比为,又直线与双曲线的另一交点为,若. (1)求椭圆的离心率; (2)求双曲线和椭圆的方程.
如图,平面平面是正方形,是矩形,且,是的中点. (1)求与平面所成角的正弦值; (2)求二面角的余弦值.
已知均为实数,命题方程无实根;命题无实根.判断当时,命题的真假.