数列中,,求数列的通项公式.
已知椭圆的右焦点为,且点在椭圆上,为坐标原点. (Ⅰ)求椭圆的标准方程; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围; (Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
设函数,的定义域均为,且是奇函数,是偶函数,,其中e为自然对数的底数. (Ⅰ)求,的解析式,并证明:当时,,; (Ⅱ)设,,证明:当时,.
如图所示,矩形中,,,,且,交于点. (Ⅰ)求证:; (Ⅱ)求三棱锥的体积.
设等差数列的公差为d,前n项和为,等比数列的公比为q.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)当时,记,求数列的前n项和.
已知向量,,设函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)在中,边分别是角的对边,角为锐角,若,,的面积为,求边的长.