已知,且.(Ⅰ)当时,求在处的切线方程;(Ⅱ)当时,设所对应的自变量取值区间的长度为(闭区间的长度定义为),试求的最大值;
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元)。当年产量不小于80千件时,(万元)。每件商品售价为0.05万元。通过市场分析,该厂生产的商品能全部售完。(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
已知各项均为正数的数列前n项和为,首项为,且成等差数列。(1)求数列的通项公式;(2)若,设,求数列的前n项和.
几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值; (2)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率;
已知函数(1)求的值;(2)求函数的最小正周期及单调递减区间