设向量,,,函数.(1) 求函数的最大值与单调递增区间;(2) 求使不等式成立的的取值集合.
(本小题满分12分)已知中心在原点的椭圆的离心率,一条准线方程为(1)求椭圆的标准方程;(2)若以>0)为斜率的直线与椭圆相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。
(本小题满分12分)某商店商品每件成本10元,若售价为25元,则每天能卖出288件,经调查,如果降低价格,销售量可以增加,且每天多卖出的商品件数t与商品单价的降低值(单位:元,)的关系是t=.(1)将每天的商品销售利润y表示成的函数;(2)如何定价才能使每天的商品销售利润最大?
(本小题满分12分)如图所示,矩形的对角线交于点G,AD⊥平面,,,为上的点,且BF⊥平面ACE(1)求证:平面;(2)求三棱锥的体积.
(本小题满分13分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间.(1)求实数的值及参加“掷铅球”项目测试的人数;(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率.
已知函数(1)求函数的最小值及单调减区间;(2)在中,分别是角的对边,且,,,且,求,c的值