(本小题满分12分) 已知点为双曲线(为正常数)上任一点,为双曲线的右焦点,过作右准线的垂线,垂足为,连接并延长交轴于. (1) 求线段的中点的轨迹的方程; (2) 设轨迹与轴交于两点,在上任取一点,直线分别交轴于两点.求证:以为直径的圆过两定点.
已知曲线直线 将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程和普通方程; 设点P在曲线C上,求点P到直线的距离的最小值。
如图,BA是圆O的直径,延长BA至E,使得AE=AO,过E点作圆O的割线交圆O于D、E,使AD=DC, 求证:; 若ED=2,求圆O的内接四边形ABCD的周长。
已知函数, (1)求函数在上的最小值; (2)若函数与的图像恰有一个公共点,求实数a的值; (3)若函数有两个不同的极值点,且,求实数a的取值范围。
已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足 (Ⅰ) 求椭圆的标准方程; (Ⅱ) 圆O是以为直径的圆,直线:与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。
如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=, (1) 求证:DE⊥AC (2)求DE与平面BEC所成角的正弦值 (3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。