甲,乙两人进行乒兵球比赛,在每一局比赛中,甲获胜的概率为。(1)如果甲,乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求的取值范围;(2)若,当采用3局2胜制的比赛规则时,求甲获胜的概率;(3)如果甲,乙两人比赛6局,那么甲恰好胜3局的概率可能是吗?
【2015高考新课标2,理23】选修4-4:坐标系与参数方程 在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线. (Ⅰ)求与交点的直角坐标; (Ⅱ)若与相交于点,与相交于点,求的最大值.
【2015高考新课标2,理22】选修4—1:几何证明选讲 如图,为等腰三角形内一点,圆与的底边交于、两点与底边上的高交于点,与、分别相切于、两点. (Ⅰ)证明:; (Ⅱ)若等于的半径,且,求四边形的面积.
【2015高考上海,理19】如图,在长方体中,,,、分别是、的中点.证明、、、四点共面,并求直线与平面所成的角的大小.
【2015高考湖南,理19】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且底面,点,分别在棱,BC上. (1)若P是的中点,证明:; (2)若平面,二面角的余弦值为,求四面体的体积.
【2015高考广东,理18】如图,三角形所在的平面与长方形所在的平面垂直,,,.点是边的中点,点分别在线段、上,且. (1)证明:; (2)求二面角的正切值; (3)求直线与直线所成角的余弦值.