计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的画必须放在一起,并且水彩画不放在两端,不同的陈列种数有多少种?
△ABC中,a、b、c分别是角A、B、C的对边,△ABC的周长为+2,且sinA+sinB=sinC.(1)求边c的长. (2)若△ABC的面积为sinC,求角C的度数.
数列满足,. (1)求证:为等差数列,并求出的通项公式; (2)设,数列的前项和为,对任意都有成立,求整数的最大值.
已知数列的前项和为,,是与的等差中项(). (1)求数列的通项公式; (2)是否存在正整数,使不等式恒成立,若存在,求出 的最大值;若不存在,请说明理由.
在中,角、、所对的边分别为、、,满足. (1)求角; (2)求的取值范围.
已知函数,. (1)设是函数的一个零点,求的值; (2)求函数的单调递增区间.