平面向量,若存在不同时为的实数和,使且,试确定函数的单调区间
如图:是⊙的直径,是弧的中点,⊥,垂足为,交于点.(1)求证:=;(2)若=4,⊙的半径为6,求的长.
已知(1)若,求的极大值点;(2)若且存在单调递减区间,求的取值范围.
已知椭圆过点,且离心率为.斜率为的直线与椭圆交于A、B两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求△的面积.
在某次体检中,有6位同学的平均体重为65公斤.用表示编号为的同学的体重,且前5位同学的体重如下:
(1)求第6位同学的体重及这6位同学体重的标准差;(2)从前5位同学中随机地选2位同学,求恰有1位同学的体重在区间中的概率.
菱形的边长为3,与交于,且.将菱形沿对角线折起得到三棱锥(如图),点是棱的中点,.(1)求证:平面平面;(2)求三棱锥的体积.