已知各棱长均为a的正四面体ABCD,E是AD边的中点,连结CE.求CE与底面BCD所成角的正弦值.
.(本小题满分12分). 如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列. (1)求该弦椭圆的方程; (2)求弦AC中点的横坐标; (3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
(本小题满分12分) 已知双曲线的中心在原点,对称轴为坐标轴,焦点在x轴上,两准线间的距离为,并且与直线相交所得线段中点的横坐标为,求这个双曲线方程。
(本小题满分12分) 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2," AA="2," E、E、F分别是棱AD、AA、AB的中点。 (1)证明:直线EE//平面FCC; (2)求二面角B-FC-C的余弦值。
(本小题满分12分)如图四棱锥的底面是正方形,,点E在棱PB上,O为AC与BD的交点。 (1)求证:平面; (2)当E为PB中点时,求证://平面PDA,//平面PDC。 (3)当且E为PB的中点时,求与平面所成的角的大小。
(本小题满分12分)设,其中为正实数 (1)当时,求的极值点; (2)若为上的单调函数,求的取值范围。