(本题满分15分)已知a∈R,函数f (x) =x3 + ax2 + 2ax (x∈R). (Ⅰ)当a = 1时,求函数f (x)的单调递增区间; (Ⅱ)函数f (x) 能否在R上单调递减,若是,求出a的取值范围;若不能,请说明理由; (Ⅲ)若函数f (x)在[-1,1]上单调递增,求a的取值范围.
(本小题满分12分)如图,直三棱柱ABC—A1B1C1中,已知AC =BC = AA1=a,∠ACB =90°,D 是A1B1中点.(Ⅰ)求证:C1D ⊥平面A1B1BA ; (Ⅱ)请问, 当点F 在BB1上什么位置时,会使得AB1⊥平面C1DF ?并证明你的结论.
(本小题满分9分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (Ⅰ)当l经过圆心C时,求直线l的方程; (Ⅱ)当弦AB被点P平分时,写出直线l的方程; (Ⅲ)当直线l的倾斜角为45º时,求弦AB的长.
(本小题满分9分)如图,圆锥中,为底面圆的两条直径,,且⊥,, 为的中点.(Ⅰ)求证:∥平面;(Ⅱ)求圆锥的表面积; (Ⅲ)求异面直线与所成角的正切值.
(本小题满分12分)分别求满足下列条件的直线方程.(Ⅰ)过点,且平行于:的直线;(Ⅱ)与:垂直,且与点距离为的直线.
定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。已知函数,(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界函数值,求实数的取值范围;(3)若,求函数在上的上界T的取值范围。