如图,平面直角坐标系中,和为两等腰直角三角形,,C(a,0)(a>0).设和的外接圆圆心分别为,.(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程;(Ⅲ)是否存在这样的⊙N,使得⊙N上有且只有三个点到直线AB的距离为,若存在,求此时⊙N的标准方程;若不存在,说明理由.
(本题满分13分) 工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立. (Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化? (Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数学期望); (Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数学期望)达到最小,并证明之。
(本题满分12分) 已知函数 (1)求函数的最小值; (2)解不等式.
袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求: (1)取出的3个小球上的数字互不相同的概率; (2)计分介于20分到40分之间的概率.
(本题满分10分) 已知二项展开式中,第4项的二项式系数与第3项的二项式系数的比为. (I)求的值; (II)求展开式中项的系数。
已知x,y均为正数,且x>y,求证:.