如图,平面直角坐标系中,和为两等腰直角三角形,,C(a,0)(a>0).设和的外接圆圆心分别为,.(Ⅰ)若⊙M与直线CD相切,求直线CD的方程;(Ⅱ)若直线AB截⊙N所得弦长为4,求⊙N的标准方程;(Ⅲ)是否存在这样的⊙N,使得⊙N上有且只有三个点到直线AB的距离为,若存在,求此时⊙N的标准方程;若不存在,说明理由.
(本题满分14分)在平面直角坐标系中,设点(1,0),直线:,点在直线上移动,是线段与轴的交点, .(Ⅰ)求动点的轨迹的方程;(Ⅱ)记的轨迹的方程为,过点作两条互相垂直的曲线的弦、,设、 的中点分别为.求证:直线必过定点.
已知曲线上任意一点到两个定点和的距离之和为4.(1)求曲线的方程;(2)设过的直线与曲线交于、两点,且(为坐标原点),求直线的方程.
((本小题满分14分)已知直线与抛物线交于A,B两点,且经过抛物线的焦点F,(1)若已知A点的坐标为,求线段AB中点到准线的距离. (2)求面积最小时,求直线的方程。
(本小题满分12分)已知圆C:是否存在斜率为1的直线,使被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程,若不存在说明理由。
(本小题满分12分)已知与曲线、y轴于、为原点。(1)求证:;(2)求线段AB中点的轨迹方程;(3)求△AOB面积的最小值。