求函数的最大值。
已知数列满足().(1)求的值;(2)求(用含的式子表示);(3)(理)记数列的前项和为,求(用含的式子表示).
某通讯公司需要在三角形地带区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域内,乙中转站建在区域内.分界线固定,且=百米,边界线始终过点,边界线满足.设()百米,百米.(1)试将表示成的函数,并求出函数的解析式;(2)当取何值时?整个中转站的占地面积最小,并求出其面积的最小值.
已知复数.(1)求的最小值;(2)设,记表示复数z的虚部).将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图像向右平移个单位长度,得到函数的图像.试求函数的解析式.
(理)已知直三棱柱中,,是棱的中点.如图所示. (1)求证:平面;(2)求二面角的大小.
如下图所示,椭圆的左顶点为,是椭圆上异于点的任意一点,点与点关于点对称.(1)若点的坐标为,求的值;(2)若椭圆上存在点,使得,求的取值范围.