如图,在棱长为1的正方体中,(I)在侧棱上是否存在一个点P,使得直线与平面所成角的正切值为;(Ⅱ)若P是侧棱上一动点,在线段上是否存在一个定点,使得在平面上的射影垂直于.并证明你的结论.
由下列各式:1>,1++>1,1++++++>,1+++……+>2,你能得出怎样的结论,并进行证明
下面玩掷骰子放球的游戏:若掷出1点,甲盒中放入一球;若掷出2点或是3点,乙盒中放入一球;若掷出4点或5点或6点,丙盒中放入一球.设掷n次后,甲、乙、丙盒内的球数分别为x,y,z.(1)当n=3时,求x、y、z成等差数列的概率;(2)当n=6时,求x、y、z成等比数列的概率;(3)设掷4次后,甲盒和乙盒中球的个数差的绝对值为ξ,求Eξ.
某车间甲组有10名工人,其中有4名女工人;乙组有10名工人,其中有6名女工人.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取4名工人进行技术考核.(1)求从甲、乙两组各抽取的人数;(2)求从甲组抽取的工人中恰有1名女工人的概率;(3)求抽取的4名工人中恰有2名男工人的概率
袋中装有大小相同标号不同的白球4个,黑球5个,从中任取3个球.(1)共有多少种不同结果?(2)取出的3球中有2个白球,1个黑球的结果有几个?(3)取出的3球中至少有2个白球的结果有几个?(4)计算第(2)、(3)小题表示的事件的概率
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力.每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列