已知数列的前n项和为Sn,点的直线上,数列满足,,且的前9项和为153. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列的前n项和为Tn,求使不等式 对 一切都成立的最大正整数k的值.
设△ABC三个角A,B,C的对边分别为a,b,c,向量,,且. (Ⅰ)求角B的大小; (Ⅱ)若△ABC是锐角三角形,,求的取值范围.
已知
已知函数.(I)求在上的最大值;(II)若对任意的实数,不等式恒成立,求实数的取值范围;(III)若关于的方程在上恰有两个不同的实根,求实数的取值范围.
如图,矩形ABCD中,AB=CD=2,BC=AD=。现沿着其对角线AC将D点向上翻折,使得二面角D—AC—B为直二面角。(Ⅰ)求二面角A—BD—C平面角的余弦值。(Ⅱ)求四面体ABCD外接球的体积;
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.