(本小题满分16分) 已知二次函数。 (1)若是否存在为正数 ,若存在,证明你的结论,若不存在,说明理由;(2)若对有2个不等实根,证明必有一个根属于(3)若,是否存在的值使=成立,若存在,求出的取值范围,若不存在,说明理由。
(本小题满分12分)已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围.
(本小题共12分) 圆中,求面积最小的圆的半径长。
(本小题共12分)甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”。 (1)求一个“单位射击组”为“单位进步组”的概率; (2)记完成三个“单位射击组”后出现“单位进步组”的次数,求的分布列与数学期望。
(本小题共12分)已知,四棱锥P—ABCD的底面ABCD的边长为1的正方形,PD⊥底面ABCD,且PD=1。 (1)求证:BC//平面PAD; (2)若E、F分别为PB、AD的中点,求证:EF⊥平面PBC; (3)求二面角B—PA—C的余弦值。
(本小题共10分)已知锐角的三内角A、B、C的对边分别是。 (1)求角A的大小; (2)求的值。