(本小题满分14分)已知是正数组成的数列,,且点()(nN*)在函数的图象上.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,,求数列的通项公式.
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
已知函数处取得极小值-4,使其导函数的取值范围为(1,3)。(1)求的解析式及的极大值;(2)当的最大值。
已知函数(1)若上单调递增,且,求证:(2)若处取得极值,且在时,函数的图象在直线的下方,求c的取值范围.
已知函数,其中a为常数. (1)若当恒成立,求a的取值范围;(2)求的单调区间.
求函数在区间上的最大值与最小值。