(本题15分)如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,且,.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
已知函数. (1)判断并证明的奇偶性; (2)求证:; (3)已知a,b∈(-1,1),且,,求,的值.
已知命题p:方程x2+mx+1=0有负实数根; 命题q:方程4x2+4(m-2)x+1=0无实数根, 若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围。
已知函数, (Ⅰ)若,求方程的根; (Ⅱ)若函数满足,求函数在的值域;
已知复数满足. (1)求复数;(2)为何值时,复数对应点在第一象限.
已知a,b都是正数,求证:.