某种食品是经过、、三道工序加工而成的,、、工序的产品合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场.(Ⅰ)正式生产前先试生产袋食品,求这2袋食品都为废品的概率;(Ⅱ)设为加工工序中产品合格的次数,求的分布列和数学期望.
过曲线:外的点作曲线的切线恰有两条,(1)求满足的等量关系;(2)若存在,使成立,求的取值范围.
包含甲在内的甲、乙、丙个人练习传球,设传球次,每人每次只能传一下,首先从甲手中传出,第次仍传给甲,共有多少种不同的方法?为了解决上述问题,设传球次,第次仍传给甲的传球方法种数为;设传球次,第次不传给甲的传球方法种数为.根据以上假设回答下列问题:(1)求出的值;(2)根据你的理解写出与的关系式;(3)求的值及通项公式.
已知函数.(1)求在点处的切线方程;(2)求函数在上的最大值.
已知函数(1)若不等式的解集为或,求的表达式;(2)在(1)的条件下, 当时, 是单调函数, 求实数k的取值范围;(3)设, 且为偶函数, 判断+能否大于零?
设函数 (a>0),且方程(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y="f" (x)过原点时,求f (x)的解析式;(2)若f (x)在(-∞,+∞)内无极值点,求a的取值范围.