(本小题12分)已知椭圆C的焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率。(1)求椭圆的标准方程;(2)过椭圆C的右焦点作直线交椭圆C于A、B两点,交y轴于M,若为定值吗?证明你的结论。
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A. (1)求实数b的值; (2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点. (1)求的长; (2)求cos<>的值;(3)求证:A1B⊥C1M.
(本小题满分12分) (1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程. (2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
(本小题满分12分)设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
(本小题满分14分)已知函数处取得极值2。 (Ⅰ)求函数的表达式; (Ⅱ)当满足什么条件时,函数在区间上单调递增? (Ⅲ)若为图象上任意一点,直线与的图象切于点P,求直线的斜率的取值范围