首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 容易
  • 浏览 537

设数列 { a n } 满足 a 0 = 0 , a n + 1 = c a n 3 + 1 - c , c N * ,其中 c 为实数.
(Ⅰ)证明: a n [ 0 , 1 ] 对任意 n N * 成立的充分必要条件是 c [ 0 , 1 ] .

(Ⅱ)设 0 < c < 1 3 ,证明: a n 1 - ( 3 c ) n - 1 , n N * ;
(Ⅲ)设 0 < c < 1 3 ,证明: a 1 2 + a 2 2 + . . . . + a n 2 > n + 1 - 2 1 - 3 c , n N *

登录免费查看答案和解析

设数列{an}满足a00,an1can31c,c∈N,其中c