(本小题满分12分) 有一幅椭圆型彗星轨道图,长4cm,高,如下图, 已知O为椭圆中心,A1,A2是长轴两端点,
太阳位于椭圆的左焦点F处.
已知函数.(1)若在处取得极值,求的单调递增区间;(2)若在区间内有极大值和极小值,求实数的取值范围.
函数的定义域为,.(1)求集合;(2)若,求实数的取值范围.
命题:关于的不等式对一切恒成立,命题:函数是增函数,若中有且只有一个为真命题,求实数的取值范围.
某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5次,求:(1)其中只在第一、三、五次击中目标的概率;(2)其中恰有3次击中目标的概率.
已知函数.(1)若是函数的极值点,求曲线在点处的切线方程;(2)若函数在上为单调增函数,求的取值范围;(3)设为正实数,且,求证:.