设函数是在上每一点处可导的函数,若在上恒成立.回答下列问题:(I)求证:函数在上单调递增;(II)当时,证明:;(III)已知不等式在且时恒成立,求证:.
计算并输出1×2×3×4×﹣﹣﹣×n>1000的最小整数n,写出程序框图,并编写程序。
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,. (Ⅰ)求直方图中的值; (Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;
已知,,其中 (1)求证:与互相垂直; (2)若与的长度相等,求的值(为非零的常数) .
(1)若函数,则_______________. (2)化简:=____________.
如图,ABCD是一块边长为100m的正方形地皮,其中AST是一半径为90m的扇形小山,其他部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在弧ST上,相邻两边CQ,CR落在正方形的边BC,CD上,求矩形停车场PQCR的面积S的最大值和最小值(结果取整数).