东北三校高三第二次联合模拟考试文科数学试卷
以下有关线性回归分析的说法不正确的是
A.通过最小二乘法得到的线性回归直线过样本点的中心 |
B.用最小二乘法求回归直线方程,是寻求使最小的a、b的值 |
C.相关系数r越小,表示两个变量相关性越弱 |
D.与接近1.表示回归的效果越好 |
三棱柱ABC-A1B1C1的底面是边长为的正三角形,侧棱AA1⊥底面ABC,若球O与三棱柱ABC-A1B1C1各侧面、底面均相切,则侧棱AA1的长为
A. | B. | C.1 | D. |
某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背。为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验。
两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点)
(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;
(2)从乙组准确回忆因结束在[12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量X,求X分布列及数学期望;
(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好? 计算并说明理由。
已知四边形ABCD为平行四边形,BC⊥平面ABE,AE⊥BE,BE =" BC" = 1,AE = ,M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。
(1)求证:MN⊥EA;
(2)求四棱锥M – ADNP的体积。
设椭圆C:的两个焦点为F1、F2,点B1为其短轴的一个端点,满足,。
(1)求椭圆C的方程;
(2)过点M 做两条互相垂直的直线l1、l2设l1与椭圆交于点A、B,l2与椭圆交于点C、D,求的最小值。
已知函数,.
(1)若对任意的实数a,函数与的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a > 0,对任意x > 0不等式恒成立,求实数a的取值范围。
如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D。
(1)求证:CE2 =" CD" · CB;
(2)若AB =" BC" = 2,求CE和CD的长。
在直角坐标系xOy中,已知点P ,曲线C的参数方程为(φ为参数)。以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为。
(1)判断点P与直线l的位置关系,说明理由;
(2)设直线l与直线C的两个交点为A、B,求的值。