江苏省扬州市高二下学期期末考试文科数学试卷
“”是“函数为奇函数”的 条件.
(从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选择适当的填写)
来源:2013-2014学年江苏省扬州市高二下学期期末考试文科数学试卷
已知函数是定义在上的单调增函数,且对于一切实数x,不等式恒成立,则实数b的取值范围是 .
来源:2013-2014学年江苏省扬州市高二下学期期末考试文科数学试卷
设是的两个非空子集,如果存在一个从到的函数满足:(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下4对集合.①;②;③;④,其中,“保序同构”的集合对的对应的序号是 (写出所有“保序同构”的集合对的对应的序号).
来源:2013-2014学年江苏省扬州市高二下学期期末考试文科数学试卷
已知,命题,命题.⑴若命题为真命题,求实数的取值范围;⑵若命题为真命题,命题为假命题,求实数的取值范围.
来源:2013-2014学年江苏省扬州市高二下学期期末考试文科数学试卷
已知函数(为实数,),,⑴若,且函数的值域为,求的表达式;
⑵设,且函数为偶函数,求证:.
来源:2013-2014学年江苏省扬州市高二下学期期末考试文科数学试卷
如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,和的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
来源:2013-2014学年江苏省扬州市高二下学期期末考试文科数学试卷
如图,圆与坐标轴交于点.
⑴求与直线垂直的圆的切线方程;
⑵设点是圆上任意一点(不在坐标轴上),直线交轴于点,直线交直线于点,
①若点坐标为,求弦的长;②求证:为定值.
来源:2013-2014学年江苏省扬州市高二下学期期末考试文科数学试卷