设是的两个非空子集,如果存在一个从到的函数满足:(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下4对集合.①;②;③;④,其中,“保序同构”的集合对的对应的序号是 (写出所有“保序同构”的集合对的对应的序号).
(文)已知点和互不相同的点,,,…,,…,满足,为坐标原点,其中分别为等差数列和等比数列,若是线段的中点,设等差数列公差为,等比数列公比为,当与满足条件时,点,,,…,,…共线
(理)已知点和互不相同的点,,,…,,…,满足,为坐标原点,其中分别为等差数列和等比数列,是线段的中点,对于给定的公差不为零的,都能找到唯一的一个,使得,,,…,,…,都在一个指数函数(写出函数的解析式)的图像上.
若是等差数列,是互不相等的正整数,有正确的结论:,类比上述性质,相应地,若等比数列,是互不相等的正整数,有
斜率为1的直线与椭圆相交于两点,AB的中点, 则
设等比数列{an}的公比q≠1,若{an+c}也是等比数列,则c= .