新课标高三数学抛物线、直线与圆锥曲线的位置关系专项训练(河北)
设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )
A. | B.[-2,2] |
C.[-1,1] | D.[-4,4] |
已知对k∈R,直线y-kx-1=0与椭圆+=1恒有公共点,则实数m的取值范围是( )
A.(0,1) | B.(0,5) |
C.[1,5)∪(5,+∞) | D.[1,5) |
对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上 ②焦点在x轴上 ③抛物线上横坐标为1的点到焦点的距离等于6 ④抛物线的通径的长为5
⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1)
能使这个抛物线方程为y2=10x的条件是________.(要求填写合适条件的序号)
如右图所示,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A、B.
(1)求证:A、M、B三点的横坐标成等差数列;
(2)已知当M点的坐标为(2,-2p)时,=4,求此时抛物线的方程;
已知M(0,-2),点A在x轴上,点B在y轴的正半轴,点P在直线AB上,且满足=,·=0.
(1)当点A在x轴上移动时,求动点P的轨迹C的方程;
(2)过(-2,0)的直线l与轨迹C交于E、F两点,又过E、F作轨迹C的切线l1、l2,当l1⊥l2,求直线l的方程.
已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA,垂足为N,求点N的坐标