广东省深圳市高三级第二次调研考试数学文卷(深圳二模)
已知图1、图2分别表示、两城市某月日至日当天最低气温的数据折线图(其中横轴表示日期,纵轴表示气温),记、两城市这天的最低气温平均数分别为和,标准差分别为和.则
A., | B., |
C., | D., |
已知:;:方程表示双曲线.则是的
A.充分非必要条件 | B.必要非充分条件 |
C.充要条件 | D.既非充分也非必要条件 |
如右图,已知一个锥体的正(主)视图,侧(左)视图和俯视图均为直角三角形,且面积分别为3,4,6,则该锥体的体积为
A. | B. | C. | D. |
因为某种产品的两种原料相继提价,所以生产者决定对产品分两次提价,现在有三种提价方案:
方案甲:第一次提价,第二次提价;
方案乙:第一次提价,第二次提价;
方案丙:第一次提价,第二次提价,
其中,比较上述三种方案,提价最多的是
A.甲 | B.乙 | C.丙 | D.一样多 |
先后抛掷一枚均匀的正方体骰子(它们的六个面分别标有点数),所得向上点数分别为和,则函数在上为增函数的概率是
A. | B. | C. | D. |
如图1是一个边长为1的正三角形,分别连接这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连接图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推.设第个图中原三角形被剖分成个三角形,则第4个图中最小三角形的边长为 ; .
图1 图2 图3
(本小题满分12分)
某校高三(1)班共有名学生,他们每天自主学习的时间全部在分钟到分钟之间,按他们学习时间的长短分个组统计得到如下频率分布表:
分组 |
频数 |
频率 |
[180 , 210) |
||
[210 , 240) |
||
[240 , 270) |
||
[270 , 300) |
||
[300 , 330) |
(1)求分布表中,的值;
(2)某兴趣小组为研究每天自主学习的时间与学习成绩的相关性,需要在这名学生中按时间用分层抽样的方法抽取名学生进行研究,问应抽取多少名第一组的学生?
(3)已知第一组的学生中男、女生均为人.在(2)的条件下抽取第一组的学生,求既有男生又有女生被抽中的概率.
(本小题满分14分)
如图1,在直角梯形中,,,且.
现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.
(1)求证:∥平面;
(2)求证:平面;
(3)求点到平面的距离.
(本小题满分14分)
已知椭圆的两焦点为,,并且经过点.
(1)求椭圆的方程;
(2)已知圆:,直线:,证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.
(本小题满分14分)
执行下面框图所描述的算法程序,记输出的一列数依次为,,…,,,.(注:框图中的赋值符号“”也可以写成“”或“:”)
(1)若输入,写出输出结果;
(2)若输入,令,证明是等差数列,并写出数列的通项公式;
(3)若输入,令,.
求证:.