广东省高三高考全真模拟试卷数学理卷二
图1是根据某班学生在一次数学考试
中的成绩画出的频率分布直方图,若80
分以上为优秀,根据图形信息可知:
这次考试的优秀率为
A. | B. | C. | D. |
在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为
A. | B. | C. | D. |
若,定义一种向量积:,
已知,且点在函数的图象上运动,点在函数的图象上运动,且点和点满足:(其中O为坐标原点),则函数的最大值及最小正周期分别为€网
☆
A. | B. | C. | D. |
.已知等差数列 中,有 成立.
类似地,在等比数列 中,
有______ _______________成立.
..在中,分别为内角所对的边,且.
现给出三个条件:①; ②;③.试从中选出两个可以确定的条件,并以此为依据求的面积.(只需写出一个选定方案即可)你选择的条件是 (用序号填写);由此得到的的面积为
.(本小题满分12分)已知平面上三点,,.
(1)若(O为坐标原点),求向量与夹角的大小;
(2)若,求的值.
.(本小题满分12分)第16届亚运会将于2010年11月在广州市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为. 求该运动员在5次射击中,(1)恰有3次射击成绩为10环的概率;
(2)至少有3次射击成绩为10环的概率;
(3)记“射击成绩为10环的次数”为,求.(结果用分数表示)
(本小题满分14分)如图5,已知平面,平面,△为等边三角形,,为的中点.
(1)求证:平面;(2)求证:平面平面;
(3)求直线和平面所成角的正弦值.
(本小题满分14分)过点作曲线的切线,切点为,过作轴的垂线交 轴于点,又过作曲线C的,切点为,过作轴的垂线交轴于点,…,依次下去得到一系列点,…,设点的横坐标为.(1)求数列的通项公式;
(2)求和;(3)求证:.
(本小题满分14分)已知圆:及定点,点是圆上的动点,点在上,点在上,
且满足=2,·=.
(1)若,求点的轨迹的方程;
(2)若动圆和(1)中所求轨迹相交于不同两点,是否存在一组正实数,使得直线垂直平分线段,若存在,求出这组正实数;若不存在,说明理由.