[四川]2014届四川省南充市高考适应性考试(零诊)理科数学试卷
已知函数,则“”是“”的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充分必要条件 | D.既不充分又不必要条件 |
已知直线和直线,抛物线上一动点P到直线和直线的距离之和的最小值是( )
A. | B.2 | C. | D.3 |
已知定义在上的函数满足:,且,,则方程在区间上的所有实根之和为( )
A.-5 | B.-6 | C.-7 | D.-8 |
函数与,则关于与的下列说法正确的是 .
①函数为偶函数;
函数为偶函数;
③在同一坐标系中作出两函数的图像,它们共有4个不同的交点;
④在同一坐标系中作出两函数的图像,它们所有交点的横坐标之和为6;
⑤在同一坐标系中作出两函数的图像,它们所有交点的横坐标之和为4.
已知是正数列组成的数列,,且点在函数的图像上,
(Ⅰ)求的通项公式;
(Ⅱ)若数列满足,,求证:.
南充市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为,,经测量米,米,米,.
(Ⅰ)求的长度;
(Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由)?最低造价为多少?()
在如图所示的几何体中,四边形是正方形,平面,,分别为,的中点,且.
(Ⅰ)求证:平面平面;
(Ⅱ)求三棱锥与四棱锥的体积之比.
由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高,然而也有部分公众对该活动的实际效果与负面影响提出了疑问,对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
|
支持 |
保留 |
不支持 |
20岁以下 |
800 |
450 |
200 |
20岁以上(含20岁) |
100 |
150 |
300 |
(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“支持”态度的人中抽取了45人,求n的值;
(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率;
(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.
设椭圆中心在坐标原点,是它的两个顶点,直线与直线相交于点D,与椭圆相交于两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.