[福建]2013届福建福州市高中毕业班质量检查文科数学试卷
已知圆C:x2+y2=2与直线l:x+y+=0,则圆C被直线l所截得的弦长为( )
A.1 | B. | C.2 | D. |
已知命题“直线与平面有公共点”是真命题,那么下列命题:
①直线上的点都在平面内;
②直线上有些点不在平面内;
③平面内任意一条直线都不与直线平行.其中真命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
如图面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD投掷1000个点,落在矩形ABCD的非阴影部分中的点数为400个,试估计阴影部分的面积为( )
A. | B. | C. | D. |
如图所示为函数的部分图象,其中A,B两点之间的距离为5,那么( ).
A.2 | B.1 | C.-1 | D. |
已知=1, =,·=0,点C在∠AOB内,且∠AOC=60°,设=m+n(m,n∈R),则=( )
A. | B. | C. | D.1 |
已知抛物线的准线与双曲线的两条渐近线围成一个等腰直角三角形,则该双曲线的离心率是( )
A. | B. | C. | D. |
对于函数与和区间D,如果存在,使,则称是函数与在区间D上的“友好点”.现给出两个函数
①, ②,
③, ④ ,
其中在区间上存在“友好点”的有( )
A.①② | B.②③ | C.③④ | D.①④ |
已知程序框图如右图所示,执行该程序,如果输入,输出,则在图中“?”处可填入的算法语句是 (写出以下所有满足条件的序号)
① ②
③ ④
设数列{an}是集合{3s+3t| 0≤s<t,且s,t∈Z}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{an}中各项按照上小下大,左小右大的原则排成如下等腰直角三角形数表:
4
10 12
28 30 36
…
= (用3s+3t形式表示).
数列的前项和为,数列是首项为,公差为的等差数列,且成等比数列.
(Ⅰ)求数列与的通项公式;
(Ⅱ)若,求数列的前项和.
已知平面向量若函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)将函数的图象上的所有的点向左平移1个单位长度,得到函数的图象,若函数在上有两个零点,求实数的取值范围.
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号 |
性别 |
投篮成绩 |
2 |
男 |
90 |
7 |
女 |
60 |
12 |
男 |
75 |
17 |
男 |
80 |
22 |
女 |
83 |
27 |
男 |
85 |
32 |
女 |
75 |
37 |
男 |
80 |
42 |
女 |
70 |
47 |
女 |
60 |
甲抽取的样本数据
编号 |
性别 |
投篮成绩 |
1 |
男 |
95 |
8 |
男 |
85 |
10 |
男 |
85 |
20 |
男 |
70 |
23 |
男 |
70 |
28 |
男 |
80 |
33 |
女 |
60 |
35 |
女 |
65 |
43 |
女 |
70 |
48 |
女 |
60 |
乙抽取的样本数据
(Ⅰ)观察乙抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
|
优秀 |
非优秀 |
合计 |
男 |
|
|
|
女 |
|
|
|
合计 |
|
|
10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中)
如图,已知多面体的底面是边长为的正方形,底面,,且.
(Ⅰ )求多面体的体积;
(Ⅱ )求证:平面EAB⊥平面EBC;
(Ⅲ)记线段CB的中点为K,在平面内过K点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
已知椭圆C:的离心率为,
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于,两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.