[浙江]2012届浙江省金华十校高三上学期期末考试理科数学
已知,则“”是“”的( )
A.充分不必要条件 |
B.必要不充分条件 |
C.充分必要条件 |
D.既不充分也不必要条件 |
执行如图的程序框图,输出的S和n的值分别是( )
A.9,3 | B.9,4 |
C.11,3 | D.11,4 |
.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的渐近线方程为( )
A. | B. | C. | D. |
项数为n的数列的前k项和为,定义为该项数列的“凯森和”,如果项系数为99项的数列的“凯森和”为1000,那么项数为100的数列100,的“凯森和”为( )
A.991 | B.1001 | C.1090 | D.1100 |
将A,B,C,D,E五种不同的文件随机地放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屈至多放一种文件,则文件A,B被放在相邻的抽屉内且文件C,D被放在不相邻的抽屉内的概率是( )
A. | B. | C. | D. |
已知变量x,y满足约束条件若目标函数取得最大值时的最优解有无穷多组,则点(a,b)的轨迹可能是( )
袋中有大小质地均相同的4个红球与2个白球,若从中有放回的依次取出一个球,记6次取球中取出红球的次数为,则的期望= ;
.已知椭圆的中心在原点,焦点在坐标轴上,与过点P(1,2)且斜率为-2的直线相交所得的弦恰好被P平分,则此椭圆的离心率是 ;
已知定义在R上的函数满足:(1)函数的图像关于原点对称;(2)对任意的实数x,都有成立;(3)当时,则方程在[-4,4]上根的个数是 ;
已知对角线互相垂直且面积为5的四边形,其顶点都在半径为3的圆上,设圆心到两对角线的距离分别为,则的最大值为 。
已知函数的最小正周期为
(1)求的单调递增区间;
(2)在中,a、b、c分别是角A、B、C的对边,若的面积为,求a的值。
如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且平面ABD,AE=a。
(1)若,求证:AB//平面CDE;
(2)求实数a的值,使得二面角A—EC—D的大小为
(本小题满分14分)
已知各项均不相等的等差数列的前四项和为14,且恰为等比数列的前三项。
(1)分别求数列的前n项和
(2)设为数列的前n项和,若不等式对一切恒成立,求实数的最小值。
(本小题满分15分)
已知抛物线上任一点到焦点的距离比到y轴距离大1。
(1)求抛物线的方程;
(2)设A,B为抛物线上两点,且AB不与x轴垂直,若线段AB的垂直平分线恰过点M(4,0),求的面积的最大值。