[北京]2010-2011年北京市东城区九年级第二学期综合练习数学卷
一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是
A. | B. | C. | D. |
若一个正多边形的一个内角等于150°,则这个正多边形的边数是
A.9 | B.10 | C.11 | D.12 |
在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:
金额(元) |
20 |
30 |
35 |
50 |
100 |
学生数(人) |
3 |
7 |
5 |
15 |
10 |
则在这次活动中,该班同学捐款金额的众数和中位数是
A.30,35 B.50,35 C.50,50 D.15,50
已知反比例函数的图象如图所示,则一元二次方程根的情况是
A.没有实根 | B.有两个不等实根 |
C.有两个相等实根 | D.无法确定 |
如图,将三角板的直角顶点放置在直线AB上的点O处.使斜边CD∥AB,则∠a的余弦值为__________.
如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为 .
如图,点A、B、C的坐标分别为(3,3)、(2,1)、(5,1),将△ABC先向下平移4个单位,得△A1B1C1;再将△A1B1C1沿y轴翻折,得△A2B2C2.
(1)画出△A1B1C1和△A2B2C2;
(2)求线段B2C长.
列方程或方程组解应用题
为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.
如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).
(1)求直线QC的解析式;
(2)点P(a,0)在边AB上运动,若过点P、Q的直线将矩形ABCD的周长分成3∶1两部分,求出此时a的值.
如图,在梯形ABCD中,AD//BC,BD是∠ABC的平分线.
(1)求证:AB=AD;
(2)若∠ABC=60°,BC=3AB,求∠C的度数
如图,四边形ABCD是平行四边形,以AB为直径的
⊙O经过点D,E是⊙O上一点,且ÐAED=45°.
(1) 试判断CD与⊙O的位置关系,并证明你的结论;
(2) 若⊙O的半径为3,sinÐADE=,求AE的值.
某商店在四个月的试销期内,只销售A,B两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l和图2.
(1)第四个月销量占总销量的百分比是_______;
(2)在图2中补全表示B品牌电视机月销量的折线图;
(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.
(1)请在图4中画出拼接后符合条件的平行四边形;
(2)请在图2中,计算裁剪的角度(即∠ABM的度数).
已知关于x的一元二次方程,.
(1)若方程有实数根,试确定a,b之间的大小关系;
(2)若a∶b=2∶,且,求a,b的值;
(3)在(2)的条件下,二次函数的图象与x轴的交点为A、C(点A在点C的左侧),与y轴的交点为B,顶点为D.若点P(x,y)是四边形ABCD边上的点,试求3x-y的最大值.
如图1,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿CB方向平移得到的,连结AE,AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?